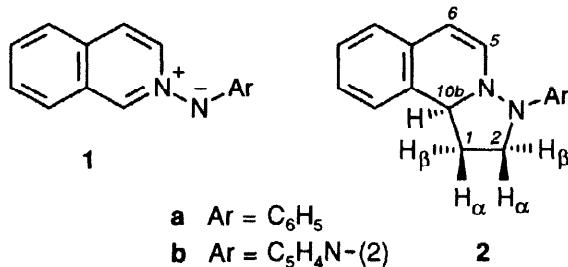


Isoquinolinium *N*-Arylimides and Electrophilic Ethylenes: Structures and NMR Spectra of Cycloadducts¹

Helmut Huber, Rolf Huisgen,* Kurt Polborn,
David S. Stephenson, and Robert Temme

Institut für Organische Chemie der Universität München
Karlstr. 23, D-80333 München, Germany


Received 13 January 1998; accepted 30 January 1998

Abstract: The title compounds furnish high yields of substituted 3-aryl-1,2,3,10b-tetrahydropyrazolo[5,1-*a*]isoquinolines of type **2**. The structural conclusions from ¹H NMR spectra are confirmed by X-ray analyses of cycloadducts **3b** and **4a**. The lone pair repulsion of the two nitrogen atoms freezes the N-inversion in the bicyclic hydrazines and determines the conformation; the torsion angle of the *n*-orbitals is close to the optimum of 90°. An intramolecular hydrogen bond of the weakly acidic 2*B*-H to the pyridyl nitrogen of **3b** was established, corroborating previous ¹H NMR evidence. The ¹³C NMR spectra of 14 cycloadducts reveal the contributions of substituents to δ . Two-dimensional NMR techniques secure the assignments of all ¹H and ¹³C signals of selected cycloadducts.

© 1998 Published by Elsevier Science Ltd. All rights reserved.

Introduction

The cycloadditions of isoquinolinium *N*-arylimides² - mainly the *N*-phenylimide **1a** and the *N*-(2-pyridyl)-imide **1b** - to twelve α,β -unsaturated carboxylic esters and nitriles proceeded at room temp. with high yields. The 1,3-dipoles **1a,b** did not react with ethylene; however, the alkaline cleavage of the cycloadducts with triphenylvinylphosphonium bromide, an electrophilic dipolarophile, provided the formal ethylene adducts **2a** and **2b**.³

The entirety of the ¹H NMR data allowed the structural assignment of about forty cycloadducts. The supposition that the imide nitrogen of **1** would be the nucleophilic terminus of the 1,3-dipole was confirmed; the methoxycarbonyl of methyl acrylate and the cyano group of acrylonitrile were located in 1*α*- or 1*β*-position of the diastereoisomeric cycloadducts.³ In the ¹H NMR spectra, the methyl group of 1*α*-CO₂CH₃ was shielded in the cycloadducts by the benzo ring of the dihydroisoquinoline system, whereas 2*α*-CO₂CH₃ did not lie in the shielding cone of the *N*-aryl residue. On comparing the ¹H NMR

spectra of the *N*-phenyl series **a** and *N*-(2-pyridyl) series **b**, i.e., **2a** and **2b** as well as their mono-, di-, and trisubstituted derivatives, we noticed a shift to higher frequency of the 2β -H signal in the *N*-(2-pyridyl) series **b** by 0.66 - 1.35 ppm. This phenomenon suggested an intramolecular hydrogen bond of 2β -H to the pyridyl nitrogen.

Several configurations of the hydrazine system in the cycloadducts **2** and their derivatives are conceivable. However, the ^1H NMR evidence suggested a strong preference for a structure which corresponds to a *cis*-annellation of the pyrazolidine ring to the dihydroisoquinoline system, the *N*-aryl being turned "backwards".³

We wanted a *direct confirmation* of the structural model which dates from 1980⁴ and was based on the ^1H NMR spectra only.

X-Ray Structures of Cycloadducts

We chose the methyl acrylate adduct **3b** as an example of the *N*-(2-pyridyl) series and found the predictions based on NMR criteria fully confirmed by the X-ray analysis. In Figure 1 as well as in the numbered formulae, the racemic cycloadducts are illustrated by the enantiomer with $10\text{b}\beta$ -H.

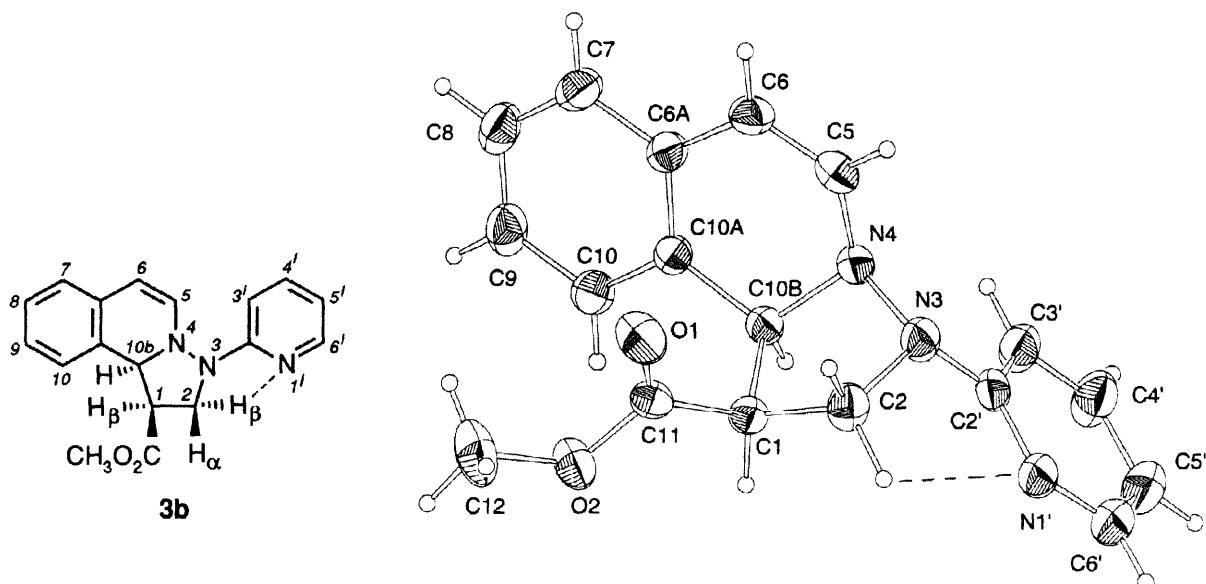


Figure 1. X-ray structure of cycloadduct **3b**; ZORTEP plot (thermal ellipsoids represent 30% probability)

The pyrazolidine ring assumes an envelope conformation with N3 as the flap. This is indicated by the dihedral angles; with 10.6° , the torsion angle at C1-C10b is the smallest (Table 1).

1,3-Cyclohexadiene (gas phase) has a half-chair conformation (C_2) with torsion angles of 17.5° at C2-C3 and 45° at C5-C6.⁵ The corresponding dihedral angles for the 6-membered heteroring of **3b** are 8.1° for C5-C6-C6a-C10a and 31.9° for C5-N4-C10b-C10a. The half-chair is deformed; N4 juts out of the quasi-plane stronger than C10b. The driving force comes mainly from keeping the repulsion potential of the lone pairs at N3 and N4 at a minimum. The hydrazine group has a key function in determining the structure.

Table 1. X-ray Structures of Methyl 1,2,3,10b-Tetrahydro-3-(2-pyridyl)pyrazolo[5,1-*a*]isoquinoline-1*α*-carboxylate (**3b**) and Methyl 1*β*-Chloro-1,2,3,10b-tetrahydro-3-phenylpyrazolo[5,1-*a*]isoquinoline-1*α*-carboxylate (**4a**); Selected Bond Lengths and Angles (in parentheses standard deviations on the last decimal)

Bond lengths (Å)	3b	4a	3b	4a
C1-C2	1.540(3)	1.532(3)	C5-C6	1.316(3)
C2-N3	1.478(3)	1.470(3)	N4-C5	1.398(3)
N3-N4	1.423(3)	1.425(2)	N3-C2'	1.406(3)
N4-C10b	1.473(3)	1.466(3)	N3-C1'	-
C10b-C1	1.580(3)	1.589(3)	N1'-C2'	1.425(3)
C1-Cl	-	1.799(2)	C1'-C2'	-
Bond angles (°)				
C1-C2-N3	105.8(2)	106.2(2)	C2-H-N1'	105.2(2)
C2-N3-N4	105.1(2)	104.5(2)	C10b-N4-C5	117.5(2)
N3-N4-C10b	106.2(2)	106.6(2)	N4-C5-C6	122.6(2)
N4-C10b-C1	104.5(2)	103.9(2)	C5-C6-C6a	121.0(2)
C10b-C1-C2	102.7(2)	102.5(2)	C6-C6a-C10a	118.2(2)
C2-N3-C2'	118.3(2)	-	C6a-C10a-C10b	120.4(2)
C2-N3-C1'	-	118.6(2)	C10a-C10b-N4	112.8(2)
C10b-N4-C5	-	-	C10b-N4-C5-C6	29.8(3)
Dihedral angles (°)				
C1-C2-N3-N4	33.6(2)	34.0(2)	N4-C5-C6-C6a	5.3(4)
C2-N3-N4-C10b	-41.5(2)	-42.2(2)	C5-C6-C6a-C10a	8.1(3)
N3-N4-C10b-C1	32.0(2)	32.5(2)	C6-C6a-C10a-C10b	0.2(3)
N4-C10b-C1-C2	-10.6(2)	-10.8(2)	C6a-C10a-C10b-N4	-19.5(3)
C10b-C1-C2-N3	-13.2(2)	-13.5(2)	C10a-C10b-N4-C5	31.9(2)
C2-N3-C2'-N1'	-41.3(3)	-	C10b-N4-C5-C6	-26.5(3)
C2-N3-C1'-C2'	-	-45.9(3)	C10b-N4-C5-C6	-24.2(3)

The enamine resonance in C6-C5-N4 and the amidine resonance in N3- α -pyridyl tend to planarize the bond systems of N3 and N4. However, the N-atoms have still distinctly pyramidal bond systems. The three bond angles at N3 furnish a sum of 336.7°, whereas those at N4 add up to 337.3°. The bond angles sum up in ammonia to 320.4° and at each of the N-atoms of gaseous hydrazine to 325°.⁶ Another measure of pyramidalization is provided by the distance of the N-atom from the plane of its three ligands⁷. N3 is located 0.41 Å above the plane of C2, C2', and N4; the distance of N4 from the plane of N3, C5, and C10b amounts to 0.40 Å.

Bipyramidal hydrazines prefer a torsion angle of 90° according to ab initio calculations.⁸ The joint analysis of electron diffraction data and rotational constants for gaseous hydrazine provided 91±2° as torsion angle;⁶ 87.0° was found for N3 and N4 of our cyclic hydrazine **3b**,⁹ i.e., the favoured orthogonality of the lone pair orbitals is well approximated.

The π -orbital at N4 cuts the plane determined by the atoms C6, C5, and N4 at an angle of 92.2°. This close approach to 90° warrants full enamine type resonance; the C5-C6 bond, i.e., the double bond

of the enamine group, is somewhat lengthened to 1.316 Å, and N4-C5 is shortened to 1.398 Å, the latter compared with 1.473 Å for N4-C10b. The effect is small compared with that in an enamino- β -ketocarbonylic ester which we recently described: C=C 1.324 Å and C-N 1.421 Å.¹⁰

Similar structural conditions should permit the amidine type resonance in the 2-aminopyridine system involving N3. The lone pair-orbital at N3 forms an angle of 79.5° with the plane defined by atoms N1', C2', and N3. The deviation from 90° is caused by the hydrogen bond C2 β -H \cdots N1'.

The position of the 2 β -H was approximated by differential Fourier transform. The distance between 2 β -H and N1' is 2.36 Å, i.e., lower than the sum of the van der Waals radii [2.7]; the distance between C2 and N1', anchor points of the intramolecular hydrogen bond, is 2.82 Å. Joesten and Schaad¹¹ give the following H \cdots B bond lengths in Å, based on neutron diffraction data, which we compare with the calculated sum of van der Waals radii [Å]:

O-H \cdots O 1.7 [2.6], N-H \cdots O 1.9 [2.6], C-H \cdots O 2.3 [2.6], O-H \cdots N 1.9 [2.7], N-H \cdots N 2.2 [2.7]

Extrapolation to C-H \cdots N yields a bond length which is in the range of our experimental value (2.36 Å).

To what extent does the hydrogen bond between 2 β -H and N1' in **3b** influence the conformation of the 5-membered heterocycle? For a second structure analysis, the *N*-phenyl compound **4a** was chosen which contains 1 β -chlorine atom in addition to the 1 α -CO₂CH₃ (Figure 2). The bond lengths and angles turned out to be rather similar to those of **3b**; the structural data of **3b** and **4a** are compared in Table 1.

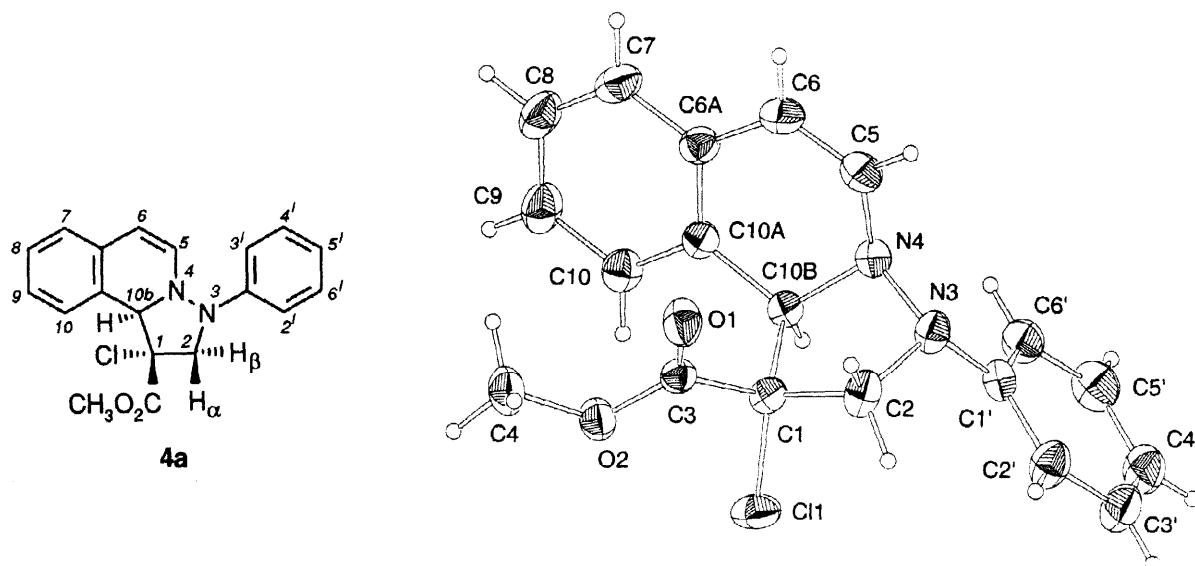
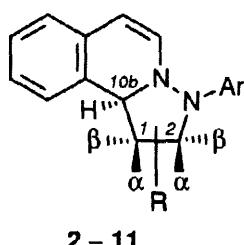


Figure 2. X-ray analysis of cycloadduct **4a**; ZORTEP plot (thermal ellipsoids represent 30% probability)

Like the *N*-(2-pyridyl) ring in **3b**, the *N*-phenyl in **4a** allows an effective aniline-type resonance. The n-orbital at N3 cuts the benzene plane in **4a** at an angle of 79.6°. The enamine resonance in the six-membered heterocycle is also well established, as shown by an angle of 93.6° between the n-orbital at N4 and the σ -bond plane of the C5-C6 double bond. Angle sums of 337.1° at N3 and 339.0° at N4 emphasize the structural similarity of **4a** with **3b**. The torsion angle between the lone-pair orbitals at N3 and N4 amounts to 93.6°, again not far from the optimal value for hydrazine, 90°.

The dihedral angle of C2-N3-C1'-C2' (45.9°) in **4a** is somewhat larger than that of C2-N3-C2'-N1' (41.3°) in **3b**; that increases the distance from 2.82 Å for C2 and N1' in **3b** to 2.97 Å for C2 and C2' in **4a**. As a result, the collision of the van der Waals radii of 2β-H and 2'-H in **4a** is diminished, although this H,H-distance of 2.10 Å is the smallest in the molecule.

Thus, the hydrogen bond between C2 and N1' in **3b** neither requires an enhancement of the lone pair repulsion at N3 and N4, nor does it impose an increase of conformational strain in the two hetero-rings. The conditions for the engagement of the C2β-H - despite its low acidity - in an *intramolecular hydrogen bond* with N1' are optimal, also from the viewpoint of entropy.


Substituent Effects in ^{13}C NMR Spectra

The assignment of the δ_{C} is unproblematic for the saturated C-atoms of the formal ethylene adducts **2a** and **2b** (Table 2). The CH_2 at lowest frequency ($\delta = 35.3, 34.6$) must be C-1; the second CH_2 is deshielded by N-3 and appears at $\delta = 50.0$ and 45.7, respectively. The CH signal of C-10b is deshielded by N-4 and benzylic resonance ($\delta = 58.8, 59.7$). We reported that $\delta(2\beta\text{-H})$ of the *N*-phenyl compound **2a** was *increased* by 0.8 ppm in the *N*-(2-pyridyl) parent compound **2b**.³ Interestingly, the hydrogen bond with the pyridine nitrogen leads to a *decrease* of $\delta(\text{C-2})$ by 4.3 ppm, when **2b** is compared with **2a**.

We observed that the ^{13}C -H coupling of the methylene group C-2 in **2b** does not produce a triplet, but rather a dd as a consequence of the considerable difference of $\delta(2\alpha\text{-H})$ and $\delta(2\beta\text{-H})$. The 1α-carboxylic ester **3b** is a derivative of **2b**; here we found apparent J_{CH} values (X part of ABX) of 144.2 and 149.6 Hz for C-2. Large δ_{H} differences (≥ 0.5 ppm) of methylene protons are one of the prerequisites for the dd being resolved in the ^{13}C -H coupling.¹²

Table 2. ^{13}C Chemical Shifts (δ_{C} in CDCl_3) of the Saturated C-Atoms of 3-Aryl-1,2,3,10b-tetrahydropyrazolo-[5,1-*a*]-isoquinolines (25 or 100 MHz); **a** = 3-Phenyl, **b** = 3-(2-Pyridyl). In Parentheses: Substituent Effects ($\delta_s - \delta_2$), **E** = CO_2CH_3 .

No.	Substituents	$\delta(\text{C-1})$	$\delta(\text{C-2})$	$\delta(\text{C-10b})$
2a	none	35.30	49.96	58.76
2b	none	34.59	45.65	59.65
3b	1α-E	53.71 (19.1)	49.16 (3.5)	62.48 (2.8)
4a	1α-E, 1β-Cl	77.23 (41.9)	64.31 (14.4)	73.12 (14.4)
5a	1α-CN	39.54 (4.2)	55.14 (5.2)	60.77 (2.0)
5b	1α-CN	38.84 (4.3)	50.44 (4.8)	61.66 (2.0)
6a	1α-CH ₃ , 1β-E	59.59 (24.3)	62.64 (12.7)	64.34 (5.6)
7a	1α-CN, 1β-CH ₃	48.42 (13.1)	62.59 (12.6)	68.20 (9.4)
8a	1β-E, 2α-E	56.40 (21.1)	68.44 (18.5)	64.07 (5.3)
8b	1β-E, 2α-E	56.10 (21.5)	64.87 (19.2)	63.53 (3.9)
9a	1α-E, 2α-E	58.69 (23.4)	66.79 (16.8)	62.63 (3.9)
9b	1α-E, 2α-E	57.79 (23.2)	61.09 (15.4)	63.36 (3.7)
10a	1β-E, 2β-E	53.42 (18.1)	61.88 (11.9)	61.23 (2.5)
11a	1β-CN, 2α-CN	43.55(8.3)	56.20(6.2)	64.73(6.0)

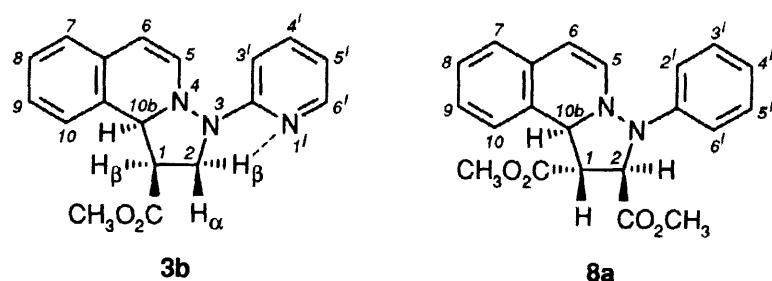
a Ar = C_6H_5
b Ar = $\text{C}_5\text{H}_4\text{N}-(2)$

As well as **2a,b**, Table 2 contains three more pairs which allow the δ_C comparison of the *N*-phenyl series **a** and the *N*-(2-pyridyl) series **b** of cycloadducts; $\delta_a - \delta_b = 0.3 - 0.9$ ppm for C-1 and 3.6 - 5.7 ppm for C-2 of **5, 8**, and **9** were found. Thus, the low frequency shift of $\delta(C-2)$ by the intramolecular hydrogen bond in the *N*-(2-pyridyl) series appears to be general.

When a methoxycarbonyl group is introduced into position 1 of **2b**, the changes of the three δ_C values in **3b** are the "substituent effects", listed in parentheses for **3b** in Table 2. The shift to high frequency of $\delta(C-1)$ by 19.1 ppm is the *gem*-CO₂CH₃ effect, and *vic*-CO₂CH₃ increases $\delta(C-2)$ by 3.5 and $\delta(C-10b)$ by 2.8 ppm. A much smaller influence of *gem*-CN is derived from **5a** and **2a** ($\Delta\delta = 4.2$ ppm) as well as from **5b** and **2b** ($\Delta\delta = 4.3$ ppm). The influence of *vic*-CN should be similar for C-2 and C-10b; $\Delta\delta_C = 5.2$ and 2.0 ppm for **5a**, and 4.8 and 2.0 ppm for **5b** reveal consistency, but not equality. The substituents influence conformational equilibria and modify δ_C as a consequence.

The *e*-CO₂CH₃ shifts C-1 and C-2 of the cyclohexane chair to high frequency by 16.5 and 2.5 ppm, respectively;¹³ that compares well with $\Delta\delta_C = 19.1$ ppm for C-1, 3.5 for C-2, and 2.8 for C-10b of the carboxylic ester **3b**. A smaller influence of C≡N on δ_C is well-known,¹³ amounting to 0.5 and 2 ppm for C-1 and C-2 of cyclohexane. The effects found for **5a** and **5b** are somewhat higher.

A 1-methyl group in combination with 1-CO₂CH₃ in **6a** (1-CN in **7a**) leads to the sums of substituent effects shown in parentheses in Table 2. When additivity of substituent increments is assumed and those for *gem*- and *vic*-CO₂CH₃ (CN) are subtracted, methyl effects of 5.2 (8.9) ppm for C-1, 9.2 (7.4) ppm for C-2, and 2.8 (7.4) ppm for C-10b result. Methyl increments of 5.8 ppm for C-1 and 8.4 ppm for C-2 of cyclohexane were reported.¹⁴ *e*-Chlorine increases $\delta(C-1)$ of cyclohexane by 32 and $\delta(C-2)$ by 10 ppm.¹⁴ The comparison of **4a** with **3b** reveals 23 ppm as increment of *gem*-Cl, and 11 (C-2) and 12 ppm (C-10b) as increments of *vic*-Cl.


In the 1,1-disubstituted cycloadducts **4a**, **6a**, and **7a**, the multiplicity of the ¹³C signals establishes a unique assignment of C-1, C-2, and C-10b. This is no longer true for the 1,2-diesters **8-10**. Applying the increments for *gem*- and *vic*-CO₂CH₃ (**3b**) to the 1,2-diesters, the following sums of substituent increments (full additivity assumed) would be expected: 23 ppm for C-1 and C-2, and 2.8 for C-10b. The δ_C values (in parentheses in Table 2) are in fair agreement for C-1 and C-10b of **8-10**, but the *cis*-diesters **9a**, **9b**, and **10a** show only $\Delta\delta(C-2) = 12 - 17$ ppm. Considerable conformational changes are concluded for the *cis*-1,2-diesters; the latter also disclosed rather large deviations in the $\delta(1\text{-H})$ and $\delta(2\text{-H})$ from those calculated with substituent increments.³ Two-dimensional NMR techniques helped in distinguishing C-2 and C-10b.

Two-Dimensional NMR Techniques

The heteronuclear shift correlation of ¹³C and ¹H signals of the adducts **3b** and **8a** was achieved by the HETCOR method.¹⁵ Table 3 presents the data for **3b**; the X-ray analysis (Figure 1) makes **3b** a suitable test object. The assignments of the saturated C-atoms (preceding section) and their H-ligands was confirmed. The AB or AX pattern of the 5-H and 6-H signals (enamine bond) is unmistakable and was corroborated by chemical conversions (cycloadditions to the enamine bond).³ The attribution of the sp²-hybridized C-atom at lowest frequency to the enhydrazine β -position 6 was unproblematic, too.

Tables of substituent increments for mono- and 1,2-disubstituted benzenes as well as for 2-substituted pyridines,^{13,14} combined with general considerations, allow tentative assignments of many aroma-

tic C-atoms and protons. Signal overlap (9-H/10-H, 3'-H/8-H for **3b** and 7-H/10-H for **8a**), the complex pattern of the benzo protons (7-H to 10-H), and the narrow δ region for C-7 to C-10 created difficulties

A DQF-COSY¹⁶ experiment (Table 3) gave the desired information and allowed the ordering of the four benzo protons in a sequence. There is no coupling in the pairs 6-H/7-H and 10-H/10b-H (U shaped long-range system). The weak coupling between 6-H and 10-H is reminiscent of the small $J_{1,5}$ of substituted naphthalenes.¹³ The direction of 7-H to 10-H was established by a NOESY¹⁷ experiment which indicates the spatial proximity of 6-H/7-H (2.53 Å in 3b) and 10-H/10b-H (2.51 Å in 3b). Furthermore, DQF-COSY indicates a coupling of 5-H with 10b-H which is not resolved in the 400 MHz spectrum; it is open, whether it is mediated by N-4 or by the conjugated chain of C-atoms.

Electron release by N-4 generates the low frequency shift of $\delta(\text{C-6})$, part of it should be conducted to C-7 and C-9. Indeed, $\delta(\text{C-9})$ is lower by 3.2 ppm than $\delta(\text{C-8})$ in the spectra of **3b** and **8a**. The same is true for the ^1H signals: $\delta(9\text{-H}) < \delta(8\text{-H})$ by 0.13 (**3b**) and 0.17 ppm (**8a**). Six further cycloadducts of series **a** and **b** were examined and showed the same regularity in their δ_{C} and δ_{H} values.

In contrast to δ_{H} of 7-H to 9-H, δ (10-H) is sensitive to the anisotropy of substituents in position 1. δ (10-H) = 7.04 was found for **3b** (1α -CO₂CH₃), 7.02 for **8a** (1β -CO₂CH₃, 2α -CO₂CH₃), 7.12 for **5a** (1α -CN), 7.14 for **7a** (1α -CN, 1β -CH₃), and 7.27 ppm for **4a** (1α -CO₂CH₃, 1β -Cl).

The X-ray structure of **3b** provides the torsion angles at C-C bonds. We expected a correlation of $^3J_{\text{H}_1\text{H}_2}$ for the pyrazolidine protons with the dihedral angles. The outcome was unsatisfactory.

The chemical shifts of the *N*-(2-pyridyl) C-atoms of **3b** are very similar to those of 2-aminopyridine.¹³

δ_{C} (ppm) of	C-2'	C-3'	C-4'	C-5'	C-6'
Cycloadduct 3b	160.9	109.0	138.0	116.2	147.7
2-Aminopyridine	161.1	110.5	138.0	113.0	148.9

The electron release by N-3 leads to a stronger decrease of δ_C in position 3' than in position 5'. The resonance effect of N-3 likewise decreases $\delta(3'-\text{H})$ and $\delta(5'-\text{H})$, but the effect is now stronger for 5'-H.

δ_{H} (ppm) of	3'-H	4'-H	5'-H	6'-H
Cycloadduct 3b	7.17	7.52	6.28	8.24
2-Aminopyridine	6.70	7.44	6.60	8.11

These shifts to low frequency are smaller for **3b** than for 2-aminopyridine, suggesting that N-3 (hydrazine type) is a weaker donor than NH₂.

Amusingly, the NOESY experiment showed a proximity relation between 3'-H of the pyridyl and 10b-H in the pyrazolidine ring which the projection formula **3b** does not reveal. The X-ray data indicate

a distance of 2.76 Å to which NOESY still responds.

The δ_{C} of the *N*-phenyl in **8a** correspond well with the signals of phenylhydrazine¹³ (in parentheses): C-1' 150.1 (151.3), C-2' 113.9 (112.0), C-3' 129.3 (129.0), C-4' 121.3 ppm (118.9). The positional sequence of the phenyl protons was established by HETCOR, DQF-COSY, and splitting pattern. The agreement of the δ_{H} of **8a** with those of phenylhydrazine is less close: 2'-H 7.14 (6.66), 3'-H 7.28 (7.18), 4'-H 6.94 ppm (6.71). The electron release of N-3 to positions 2' and 4' in **8a** appears to be weaker than that in phenylhydrazine. The anisotropy effects of the 5,6 double bond and of 2-substituents may be partially responsible for the deviations.

The X-ray data of **4a** indicated the close vicinity of 2 β -H and 2'-H (2.10 Å); the NOESY experiment testifies to the strong interaction of these protons in **8a** as a model.

In cases of overlapping ¹H signals of higher order, the computer simulation by DavinX¹⁸ produced congruent signal shapes and gave precise δ_{H} and J values. Finally, the CH couplings over two and three bonds, elucidated by COLOCS,¹⁹ allowed the distinction of the quaternary C-6a and C-10a in **3b** and **8a** and confirmed the high $\delta(\text{C-2}')$ in **3b** and $\delta(\text{C-1}')$ in **8a**.

EXPERIMENTAL

X-Ray Diffraction Analyses

Methyl 1,2,3,10b-Tetrahydro-3-(2-pyridyl)pyrazolo[5,1-a]isoquinoline-1 α -carboxylate (**3b**, Figure 1, Table 1):²⁰ Mol. mass 307.4 for $\text{C}_{18}\text{H}_{17}\text{N}_3\text{O}_2$, monoclinic. Space group $P2_1/c$, No. 14. Unit cell dimensions: $a = 9.292(1)$, $b = 8.959(2)$, $c = 19.067(3)$ Å, $\beta = 95.004(13)^\circ$, volume 1581.1 (4) Å³, $Z = 4$, $D_c = 1.291$ mg/ml; $F(000) = 648$, $T = 294$ (2) K, μ (Mo-K α) = 0.086 mm⁻¹. Data collection: CAD4 Diffractometer, pale yellow plate (.27 x .33 x .47 mm), mounted in a glass capillary, cell constants from 25 centered reflections. Mo-K α radiation, $\lambda = 0.71073$ Å, graphite monochromator, ω -2 θ -scan, scan width (0.56 + 0.56 tan Θ)^o, maximum measuring time 60 sec, intensity of three standard reflections checked every two hours, Θ range 2.14 - 22.97^o for all $-h$, $+k$, $\pm l$, 2338 reflections measured, 2183 unique and 1747 with $I > 2\sigma(I)$. Structure solution by SHELXS-86 and refinement by SHELXL-93,²¹ non-hydrogen atoms refined anisotropically, hydrogen with $U_i = 1.2 \times U_{\text{eq}}$ of the adjacent carbon atom. Full-matrix refinement against F^2 . Final $R1 = 0.0449$ and $wR2 = 0.1155$ for 1747 reflections with $I > 2\sigma(I)$ and 209 variables. $R1 = 0.0603$ and $wR2 = 0.1260$ for all data. Weight: SHELXL-93. Maximum and minimum of the final difference Fourier synthesis 0.185 and -0.247 e Å⁻³. ZORTEP plot.²²

Methyl 1 β -Chloro-1,2,3,10b-tetrahydro-3-phenylpyrazolo[5,1-a]isoquinoline-1 α -carboxylate (**4a**, Figure 2, Table 1):²⁰ $\text{C}_{19}\text{H}_{17}\text{ClN}_2\text{O}_2$, mol. mass 340.8, monoclinic. Space group $P2_1/n$, No. 14. Unit cell dimension: $a = 13.906$ (7), $b = 8.373$ (2), $c = 14.472$ (2) Å, $\beta = 98.67$ (2)^o, volume 1665.8 (9) Å³, $Z = 4$, $D_c = 1.359$ mg/ml; $F(000) = 712$, $T = 294$ (2) K, μ (Mo-K α) = 0.243 mm⁻¹. Data collection: CAD4 Diffractometer, pale yellow bloc (.33 x .47 x .57 mm), mounted in a glass capillary, cell constants from 25 centered reflections. Mo-K α radiation, $\lambda = 0.71073$ Å, graphite monochromator, ω -2 θ -scan, scan width (0.63 + 0.51 tan Θ)^o; maximum measuring time 60 sec, intensity of three standard reflections checked every two hours, Θ range 2.82 - 23.99^o for all $-h$, $+k$, $\pm l$, 2729 reflections measured, 2611 unique and 2142 with $I > 2\sigma(I)$. Structure solution by SHELXS-86 and refinement by SHELXL-93, non-hydrogen atoms refined anisotropically, hydrogens with $U_i = 1.2 \times U_{\text{eq}}$ of the adjacent carbon atom. Full-matrix

refinement against F^2 . Final $R1 = 0.0376$ and $wR2 = 0.0928$ for 2142 reflections with $I > 2\sigma(I)$ and 218 variables. $R1 = 0.0493$ and $wR2 = 0.1007$ for all data. Weight: SHELXL-93. Maximum and minimum of the final difference Fourier synthesis 0.184 and -0.230 e Å⁻³.

NMR Experiments

Instruments: The spectra were recorded on a Varian XR 400S for ¹H (400 MHz) and ¹³C (100 MHz with DEPT). Some of the ¹³C spectra were run on Varian XL 100 (25.2 MHz); the multiplicities came from the comparison of H-decoupled and off-resonance spectrum. Acid-free CDCl₃ was used.

Simulation of ABCD ¹H Spectra by DavinX:¹⁸ The computer iteration produced line shapes identical to the experimental with the following data for **3b**: δ = 6.98 (7-H), 7.04 (10-H), 7.06 (9-H), 7.18 (8-H); J (Hz) = 7.63 (for 7,8); 1.18 (7,9), 0.64 (7,10), 7.55 (8,9), 1.23 (8,10), 7.60 (9,10). **8a**: δ = 7.03 (10-H), 7.05 (7-H), 7.08 (9-H), 7.24 (8-H); J (Hz) = 7.49 (for 7,8), 1.20 (7,9), 0.61 (7,10), 7.63 (8,9), 1.28 (8,10), 7.49 (9,10).

Table 3. NMR Data of Methyl 1,2,3,10b-Tetrahydro-3-(2-pyridyl)-pyrazolo[5,1-a]isoquinoline-1 α -carboxylate (**3b**) in CDCl₃

Posi- tion No.	δ _H ppm	Multi- plicity	DQF- COSY	NOESY	δ _C ppm	COLOCS ³ J _{CH} (² J _{CH})
OCH ₃	3.17	s		10 (small)	51.42	
1 β	3.39	ddd	10b, 2 β > 2 α	10b > 2 β	53.71	(10b)
2 α	3.69	dd	2 β > 1 β	2 β	49.16	
2 β	4.77	dd	2 α > 1 β	2 α > 1 β	"	
10b	4.64	dd	1 β > 5	1 β > 10 > 3'	62.48	5, 10
6	5.47	d	5 > 10	5, 7	103.66	7, (5)
5	6.28	d	6 > 10b	6	137.93	10b, (6)
7	6.98	d br.	8 > 9	6, 8	124.76	6, 9
10	7.04	dd br.	9 > 8	(9), 10b	128.07	8, 10b
9	7.06	td	8 > 10	8, (10)	125.26	7
8	7.18	td	7 > 9 > 10	9, 7	128.41	10
5'	6.79	ddd	4', 6' > 3'	4', 6'	116.22	3', (6')
3'	7.17	dt	4' > 5'	4' > 10b	108.99	5'
4'	7.52	ddd	3', 5' > 6'	3', 5'	138.04	6'
6'	8.24	ddd br.	5' > 4' > 3'	5'	147.70	4', (5')
2'					160.86 s	6'
6a					131.41 s	5, 8, 10
10a					127.98 s	6, 7, 9, (10b)
C=O					172.50 s	OCH ₃ , 10b, (1)

Acknowledgment

We are very grateful to the *Fonds der Chemischen Industrie*, Frankfurt, for supporting the research program.

REFERENCES

This paper is dedicated to *Roald Hoffmann*, Cornell University, on the occasion of his 60th birthday.

1. 1,3-Dipolar Cycloadditions, 103; Part 102: Ref. 3.
2. Bast, K.; Behrens, M.; Durst, T.; Grashey, R.; Huisgen, R.; Schiffer, R.; Temme, R. *Eur. J. Org. Chem.* **1998**, 379-385.
3. Huisgen, R.; Temme, R. *Eur. J. Org. Chem.* **1998**, 387-401.
4. Temme, R. Ph. D. Thesis, University of Munich, 1980.
5. Review: Rabideau, P. W.; Sygula, A. in *Conformational Analysis of Cyclohexenes, Cyclohexadienes, and Related Hydroaromatic Compounds*; Rabideau, P. W., Ed.; VCH Publ.: Weinheim 1989; pp 67-70.
6. Kohata, K.; Fukuyama, T.; Kuchitsu, K. *J. Phys. Chem.* **1982**, *86*, 603-606.
7. Brown, K. L.; Damm, L.; Dunitz, J. D.; Eschenmoser, A.; Hobi, R.; Kratky, C. *Helv. Chim. Acta* **1978**, *61*, 3108-3115.
8. Review: Atkinson, R. S. "Derivatives of Hydrazine and Related Compounds", in *Comprehensive Organic Chemistry*; Barton, D. H. R.; Ollis, W. D.; Sutherland, I. O., Eds.; Pergamon Press, 1979; Vol. 2, pp 219-227.
9. A hydrogen was added to each of the lone pairs at N3 and N4 to facilitate the computer reading of bond angles and torsion angles.
10. Huisgen, R.; Giera, H.; Polborn, K. *Liebigs Ann. Chem.* **1997**, 1691-1696.
11. Joesten, M. D.; Schaad, L. J. *Hydrogen Bonding*; Marcel Dekker: New York, 1974; pp 36-38.
12. Hagaman, E. W.; Kunesch, N.; Wang, N.-Y.; Zsadon, B. *Helv. Chim. Acta* **1976**, *59*, 2711-2723.
13. Pretsch, E.; Clerc, T.; Seibl, J.; Simon, W. *Tabellen zur Strukturaufklärung organischer Verbindungen mit spektroskopischen Methoden*; Springer: Berlin, 1976.
14. Kalinowski, H.-O.; Berger, S.; Braun, S. *¹³C NMR Spectroscopy*, 3rd ed., VCH Weinheim, 1984.
15. Freeman, R.; Morris, G. A. *J. Chem. Soc., Chem. Commun.* **1978**, 684-686.
16. Piantini, U.; Sørensen, O. W.; Ernst, R. R. *J. Am. Chem. Soc.* **1982**, *104*, 6800-6801. Rance, M.; Sørensen, O.W.; Bodenhausen, G.; Wagner, G.; Ernst, R.R.; Wüthrich, K. *Biochem. Biophys. Res. Commun.* **1983**, *117*, 479-485.
17. Jeener, J.; Meier, B. H.; Bachmann, P.; Ernst, R. R. *J. Chem. Phys.* **1979**, *71*, 4546-4553. States, D. J.; Haberkorn, R. A.; Ruben, D. J. *J. Magn. Reson.* **1982**, *48*, 286-292.
18. Stephenson, D. S. *Encyclopedia of Nuclear Magnetic Resonance*; Grant, D. M.; Harris, R. K., Eds.; J. Wiley: New York, 1996; pp 816-821.
19. Kessler, H.; Griesinger, C.; Zarbock, J.; Loosli, H. R. *J. Magn. Reson.* **1987**, *25*, 837-842.
20. Further details may be obtained from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ (U.K.), on quoting the names of the authors and the journal citation.
21. Programmes SHELXS-86 and SHELXL-93: Sheldrick, G. M., University of Göttingen, **1986**, **1993**.
22. Programme: Zsolnai, L., University of Heidelberg, **1994**.